Nano One is aiming to disrupt materials manufacturing markets with affordable higher performance alternatives.

Nanomaterials are substances with structural features measured in nanometres, which is billionths of a metre or millionths of a millimetre, sized between molecular and microscopic. There can be nanometre-sized particles or crystals, or nanometre-sized structures within larger particles. Nanomaterials can be organic or inorganic; they can be made of metals, ceramics, semi-conductors, polymers or composites.

The properties of materials at these nanoscales differ significantly from those at a larger scale. These nanometre-sized features behave in unique ways and have valuable optical, magnetic, electronic, mechanical and chemical properties. Nanomaterials are found in natural substances such as clays, gemstones, feathers and bones. For instance, they waterproof leaves, give iridescence to abalone shells, and provide grip for creatures like geckos to climb walls.

Synthetic nanomaterials have been prepared for decades in paints, gels, clays, chemical catalysts and as features on microchips. However, recent advances in analytical tools have enabled researchers to probe atoms and molecules with great precision, fueling the discovery, design, characterization, production and application of these materials into structures, devices and systems that could touch many aspects of our modern lives.

Controlling the structure and size of these materials at the nanometre scale is complex, and too costly for most industrial applications. Nano One believes it has a manufacturing solution that will change the way nanomaterials are made and lead the industrial world in a new generation of materials.

Made Affordable

Specialty Methods Industry Methods Nano One Method
$$$/kWh $$/kWh $/kWh
Spray pyrolysis
Vapor deposition
Plasma Synthesis
Solid State Synthesis

Mild temp / atm pressure
Simple scalable
controlled nucleation
controlled growth

Low Volume
High Performance
High Volume
Medium Performance
High Volume
High Performance

The vast majority of today’s materials are not nanoscale. Industry processes raw materials into fine or very fine powders by crushing, grinding, milling, blending, dissolving, precipitating, washing and filtering, sometimes in the presence of aggressive chemicals, high heat and pressure. For batteries, this impacts the structural integrity of the material, limiting complexity, uniformity, surface area, longevity, capacity, charging and cycling. These methods are widely used by industry and known as Solid State, Hydrothermal and Precipitation.

There are other specialty methods, where atoms or molecules can be assembled in a structured manner using methods that include Laser Ablation, Pyrolysis, Sol-Gel, Vapor Deposition, Plasma Synthesis, Combustion and Precipitation. Such methods are used in research and in industry where small volumes and high profitability permit. Generally, they are too costly, complex and impractical for high-volume production of materials such as those used in batteries.

Nano One’s technology differs from these methods because it enables controlled assembly of inexpensive raw materials at mild temperatures under atmospheric pressures in fast acting, versatile conditions using simple, scalable and cost effective industrial equipment suited to high volume production.